Геометрические характеристики плоского поперечного сечения 4 элемента (полоса, двутавр, швеллер уголок) 020
Рис. 1 |
Дано схему поперечного сечения, составленную из трех элементов (рис. 1). Определить геометрические характеристики составного сечения. Площадь, центр тяжести, положение главных осей, главные моменты инерции, главные радиусы инерции, главные моменты сопротивления и построить эллипс инерции.
План выполнения задачи: |
1) Выписываем из таблицы сортамента (ГОСТ 8240-72, ГОСТ 8239-72 и ГОСТ 8509-86) необходимые геометрические характеристики для швеллера, двутавра, уголка и вычисляем по формулам прямоугольника:
а) Полоса (прямоугольник) 300Х24
см 2, см 4, см 4, |
б) Швеллер №20
см 2, см 4, см 4, см, см, см. |
в) Двутавр №24
см 2, см 4, см 4, см, см. |
г) Уголок 140Х9
см 2, см 4, см 4, см 4, см, см. |
2) Определяем положение центра тяжести сечения относительно начальных осей (осей полосы)
На отдельном листе бумаги в масштабе чертим схему поперечного сечения (рис. 2) и указываем положение центральных осей каждого элемента. Выполняем привязку (указываем расстояния) центров тяжести каждого элемента относительно начальных осей
Координаты центров тяжести элементов в осях
см,
см,
см,
см,
см,
см.
Рис. 2
Площадь поперечного сечения:
см 2,
Координаты центра тяжести сечения:
см,
см.
Откладываем на рисунке координаты и с учетом знаков, обозначаем положение центра тяжести (точка С) и проводим центральные оси
Контролируем достоверность определения положения центра тяжести сложного сечения. Для этого вычисляем координаты центров тяжести элементов сечения в координатных осях и (расстояния между собственными центральными осями отдельных элементов и центральными осями сечения):
см, см, см, см. |
см, см, см, см. |
и статические моменты площади сечения относительно центральных осей:
см 3,
погрешность:
см 3,
погрешность:
3) На основании формул параллельного перехода вычисляем моменты инерции сечения относительно центральных осей и
- осевые
см 4,
см 4,
- центробежный
см 4.